在图所示的平面直角坐标系中表示下面各点:。
A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。
(1)A点到原点O的距离是__ __个单位长。
(2)将点C向左平移6个单位,它会与点 重合。
(3)连接CE,则直线CE与轴是什么位置关系?
(4)点F到、
轴的距离分别是多少?
已知抛物线: 与 轴交点为 , 在 的左侧),顶点为 .
(1)求点 , 的坐标及抛物线的对称轴;
(2)若直线 与抛物线交于点 , ,且 , 关于原点对称,求抛物线的解析式;
(3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点 在直线 上,设直线 与 轴的交点为 ,原抛物线上的点 平移后的对应点为点 ,若 ,求点 , 的坐标.
如图,在四边形 中,对角线 与 交于点 ,已知 , ,过点 作 ,分别交 、 于点 , ,连接 , .
(1)求证:四边形 是菱形:
(2)设 , , ,求 的长.
某市垃圾处理厂利用焚烧垃圾产生的热能发电.有 , 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100吨,每焚烧一吨垃圾, 焚烧炉比 焚烧炉多发电50度, , 焚烧炉每天共发电55000度.
(1)求焚烧一吨垃圾, 焚烧炉和 焚烧炉各发电多少度?
(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾, 焚烧炉和 焚烧炉的发电量分别增加 和 ,则 , 焚烧炉每天共发电至少增加 ,求 的最小值.
如图, 与等边 的边 , 分别交于点 , , 是直径,过点 作 于点 .
(1)求证: 是 的切线;
(2)连接 ,当 是 的切线时,求 的半径 与等边 的边长 之间的数量关系.
2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:
请根据图中提供的信息解答下列问题:
(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);
(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?
(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.