某公司春节联欢会预设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
已知函数
(Ⅰ)若曲线在点
处的切线与直线
平行,求出这条切线的方程;
(Ⅱ)若,讨论函数
的单调区间;
(Ⅲ)对任意的,恒有
,求实数
的取值范围.
已知三棱锥的底面
是直角三角形,且
,
平面
,
,
是线段
的中点,如图所示.
(Ⅰ)证明:平面
;
(Ⅱ)求三棱锥的体积.
2000辆汽车通过某一段公路时的时速的频率分布直方图如图所示. 问;
(Ⅰ)时速在的汽车大约有多少辆?
(Ⅱ)如果每个时段取中值来代表这个时段的平均速度,如时速在的汽车其速度视为55,请估算出这2000辆汽车的平均速度.
在公差不为0的等差数列中,
,且
依次成等差数列.
(Ⅰ)求数列的公差;
(Ⅱ)设为数列
的前
项和,求
的最小值,并求出此时的
值
设向量且
其中
是
的内角.
(Ⅰ)求的取值范围;
(Ⅱ)试确定的取值范围.