统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120).
已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,,
,
,
四点共圆,
与
的延长线交于点
,点
在
的延长线上.
(1)若,
,求
的值;
(2)若∥
,求证:线段
,
,
成等比数列.
已知函数.
(1)当时,求
的单调区间,如果函数
仅有两个零点,求实数
的取值范围;
(2)当时,试比较
与1的大小.
已知函数(
,
)的图象恒过定点
,椭圆
:
(
)的左,右焦点分别为
,
,直线
经过点
且与⊙
:
相切.
(1)求直线的方程;
(2)若直线经过点
并与椭圆
在
轴上方的交点为
,且
,求
内切圆的方程.
如图,在正四棱锥中,底面是边长为2的正方形,侧棱
,
为
的中点,
是侧棱
上的一动点。
(1)证明:;
(2)当直线时,求三棱锥
的体积.
在一个盒子中,放有标号分别为,
,
的三个小球,现从这个盒子中,有放回地先后抽得两个小球的标号分别为
、
,设
为坐标原点,设
的坐标为
.
(1)求的所有取值之和;
(2)求事件“取得最大值”的概率.