已知椭圆的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(1)求椭圆G的方程;(2)求的面积.
设命题p:函数的定义域为R;命题q:不等式
对一切实数均成立。
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。
已知函数.
⑴当时,①若
的图象与
的图象相切于点
,求
及
的值;
②在
上有解,求
的范围;
⑵当时,若
在
上恒成立,求
的取值范围.
如图,椭圆与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.
⑴求椭圆与椭圆
的方程;
⑵设点为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
⑴试用半径表示出储油灌的容积
,并写出
的范围.
⑵当圆柱高与半径
的比为多少时,储油灌的容积
最大?
如图,直三棱柱中,点
是
上一点.
⑴若点是
的中点,求证
平面
;
⑵若平面平面
,求证
.