设命题p:函数的定义域为R;命题q:不等式
对一切实数均成立。
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。
(本小题满分12分) 四棱锥的底面与四个侧面的形状和大小如图所示。
(Ⅰ)写出四棱锥中四对线面垂直关系(不要求证明)
(Ⅱ)在四棱锥中,若
为
的中点,求证:
平面
(Ⅲ)求四棱锥值。
(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示。
(Ⅰ)求第3、4、5组的频率;
(Ⅱ)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?
(本小题满分12分) 若函数的图象与直线
相切,相邻切点之
间的距离为。
(Ⅰ)求和
的值;
(Ⅱ)若点是
图象的对称中心,且
,求点
的坐标。
(13分)一个同心圆形花坛,分为两部分,中间小圆部分种植绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.
⑴ 如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?
如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?
⑵ 如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
(12分) 已知数列(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:,
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.