先化简,再选择一个你喜欢的娄(要合适哦!)代入求值:
(1)数学理解:如图①, 是等腰直角三角形,过斜边 的中点 作正方形 ,分别交 , 于点 , ,求 , , 之间的数量关系;
(2)问题解决:如图②,在任意直角 内,找一点 ,过点 作正方形 ,分别交 , 于点 , ,若 ,求 的度数;
(3)联系拓广:如图③,在(2)的条件下,分别延长 , ,交 于点 , ,求 , , 的数量关系.
如图,二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,且关于直线 对称,点 的坐标为 .
(1)求二次函数的表达式;
(2)连接 ,若点 在 轴上时, 和 的夹角为 ,求线段 的长度;
(3)当 时,二次函数 的最小值为 ,求 的值.
如图,已知 是 的直径,点 是 上一点,连接 ,点 关于 的对称点 恰好落在 上.
(1)求证: ;
(2)过点 作 的切线 ,交 的延长线于点 .如果 , ,求 的直径.
如图,已知一次函数 的图象与坐标轴交于 , 两点,并与反比例函数 的图象相切于点 .
(1)切点 的坐标是 ;
(2)若点 为线段 的中点,将一次函数 的图象向左平移 个单位后,点 和点 平移后的对应点同时落在另一个反比例函数 的图象上时,求 的值.
如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中 为下水管道口直径, 为可绕转轴 自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径 , 为检修时阀门开启的位置,且 .
(1)直接写出阀门被下水道的水冲开与被河水关闭过程中 的取值范围;
(2)为了观测水位,当下水道的水冲开阀门到达 位置时,在点 处测得俯角 ,若此时点 恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)
, , , , , ,