求两变量间的回归方程.
价格x |
14 |
16 |
18 |
20 |
22 |
需求量Y |
12 |
10 |
7 |
5 |
3 |
求出Y对X的回归直线方程,并说明拟合效果的好坏。(其中)
(本小题满分14分)
已知直线l与椭圆(a>b>0)相交于不同两点A、B,
,且
,以M为焦点,以椭圆的右准线为相应准线的双曲线与直线l相交于N(4,
1). (I)求椭圆的离心率
; (II)设双曲线的离心率为
,记
,求
的解析式,并求其定义域和值域.
(本小题满分12分)已知函数,
.
(I)证明:当时,函数
在其定义域内为单调函数;(II)若函数
的图象在点(1,
)处的切线斜率为0,且当
时,
≥
在
上恒成立,求实数a的取值范围.
(本小题满分12分)在长方体ABCD—A1B1C1D1中,AA1=1,AD=DC=.(1)求直线A1C与D1C1所成角的正切值;(2)在线段A1C上有一点Q,且C1Q=
C1A1,求平面QDC与平面A1DC所成锐二面角的大小.
(本小题满分12分)某休闲会馆拟举行“五一”应祝活动,每位来宾交30元的入场费,可参加一次抽奖活动. 抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6的六个相同小球的抽奖箱中,有放回的抽取两次,每次抽取一个球,规定:若抽得两球的分值和为12分,则获得价值为m元的礼品;若抽得两球的分值和为11分或10分,则获得价值为100元的礼品;若抽得两球的分值和低于10分,则不获奖.(1)求每位会员获奖的概率;(2)假设会馆这次活动打算即不赔钱也不赚钱,则m应为多少元?
(本小题满分12分)
已知B ,C分别为 函数y=Asinωx 在y轴右侧的第一个最大值点和最小值点,O为原点,若
,且
(1) 求A ,ω 的值 (2)求函数y=Asinωx 的单调递增区间