游客
题文

已知二次函数h(x)=ax2bxc(c>0),其导函数yh′(x)的图象如下,且f(x)=ln xh(x).
(1)求函数f(x)在x=1处的切线斜率;
(2)若函数f(x)在上是单调函数,求实数m的取值范围;
(3)若函数y=2x-lnx(x∈[1,4])的图象总在函数yf(x)的图象的上方,求c的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(选修4-1:几何证明选讲)
如图,AD是∠BAC的平分线,圆O过点A且与边BC相切于点D,与边AB、AC分别交于点E、F,求证:EF∥BC.

(本小题满分16分)设函数有且仅有两个极值点
(1)求实数的取值范围;
(2)是否存在实数满足?如存在,求的极大值;如不存在,请说明理由.

(本小题满分16分)
已知数列是等差数列,是等比数列,且满足
(1)若
①当时,求数列的通项公式;
②若数列是唯一的,求的值;
(2)若均为正整数,且成等比数列,求数列的公差的最大值.

(本小题满分16分)已知椭圆的离心率为,并且椭圆经过点,过原点的直线与椭圆交于两点,椭圆上一点满足

(1)求椭圆的方程;
(2)证明:为定值;
(3)是否存在定圆,使得直线绕原点转动时,恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.

(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为,体积为

(1)求关于的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,的最大值是多少?并求此时的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号