如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为
,
,于水面C处测得B点和D点的仰角均为
,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,
1. 414, 
2.449)
在直三棱柱
中,
,
,求:
(1)异面直线
与
所成角的大小;
(2)直线
到平面
的距离.
已知函数
在
处存在极值.
(1)求实数
的值;
(2)函数
的图像上存在两点A,B使得
是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在
轴上,求实数
的取值范围;
(3)当
时,讨论关于
的方程
的实根个数.
已知椭圆
的右焦点为F2(1,0),点
在椭圆上.
(1)求椭圆方程;
(2)点
在圆
上,M在第一象限,过M作圆
的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
在几何体ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。
(1)设平面ABE与平面ACD的交线为直线
,求证:
∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积。
已知数列
的前
项和为
,数列
满足:
。
(1)求数列
的通项公式
;
(2)求数列
的通项公式
;
(3)若
,求数列
的前
项和
.