已知O为坐标原点,,
.
(1)求点M在第二象限或第三象限的充要条件;
(2)求证:当时,不论
为何实数,A、B、M三点都共线;
(3)若 ,求当点M为
的平分线上点时
的值.
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,]都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.
(1)求f()及f(
)
(2)证明:f(x)是周期函数;
(3)记an=f(2n+,求an.
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)="-3."
(1)证明:函数y=f(x)是R上的减函数;
(2)证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
判断下列各函数的奇偶性:
(1)f(x)=(x-2);
(2)f(x)=;
(3)f(x)=
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-
在[0,2 009]上的所有x的个数.
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.