如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记
,用
表示四棱锥P-ACFE的体积.
(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
(本小题满分12分)已知函数,
.
(Ⅰ)若,求函数
的极值;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在区间上不存在
,使得
成立,求实数
的取值范围.
在平面直角坐标系xOy中,已知两点和
,动点M满足
,设点M的轨迹为C,半抛物线
:
(
),设点
.
(Ⅰ)求C的轨迹方程;
(Ⅱ)设点T是曲线上一点,曲线
在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.
一块长为、宽为
的长方形铁片,铁片的四角截去四个边长均为
的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
如图,直三棱柱中,
,
,D是棱
上的动点.
(Ⅰ)证明:;
(Ⅱ)若平面BDC1分该棱柱为体积相等的两个部分,试确定点D的位置,并求二面角的大小.
已知函数f(x)= ex-ax-1.
(Ⅰ)若a=1,求证:;
(Ⅱ)求函数y=f(x)的值域.