游客
题文

已知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.

已知动圆M过定点F(0,﹣),且与直线y=相切,椭圆N的对称轴为坐标轴,一个焦点为F,点A(1,)在椭圆N上.
(1)求动圆圆心M的轨迹Γ的方程及椭圆N的方程;
(2)若动直线l与轨迹Γ在x=﹣4处的切线平行,且直线l与椭圆N交于B,C两点,试求当△ABC面积取到最大值时直线l的方程.

已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线y2=2px上,△ABC的重心与此抛物线的焦点F重合(如图)

(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标
(3)求BC所在直线的方程.

(本小题满分14分)设函数
(1)在区间上画出函数的图像;
(2)设集合.试判断集合之间的关系,并给出证明;
(3)当时,求证:在区间上,的图像位于函数图像的上方.

(本小题满分14分)已知函数的最大值不大于
(1)求实数a的取值范围;
(2)当时.,求实数a的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号