(本小题满分10分)选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为
,直线C2的参数方程为:
(t为参数)
(I )求曲线C1的直角坐标方程,曲线C2的普通方程.
(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的
倍得到曲线C3 P为曲线C3上一动点,求点P到直线C2距离的最小值,并求出相应的P点的坐标.
(本小题满分12分)如图,已知平面
平行于三棱锥
的底面,等边三角形
所在平面与面
垂直,且
,设
。
(Ⅰ)证明:
为异面直线
与
的公垂线;
(Ⅱ)求点
与平面
的距离;
(Ⅲ)求二面角
的大小。
(本小题满分12分)已知函数
满足
,
(Ⅰ)求
、
的值及函数
的单调递增区间;
(Ⅱ)若对
,不等式
恒成立,求
的取值范围。
(本小题满分12分)贵阳六中织高二年级4个班的学生到益佰制药厂、贵阳钢厂、贵阳轮胎厂进行社会实践,规定每个班只能在这3个厂中任选择一个,假设每个班选择每个厂的概率是等可能的。(Ⅰ)求3个厂都有班级选择的概率;(Ⅱ)用
表示有班级选择的厂的个数,求随机变量
的概率分布及数学期望
。
(本小题满分12分)已知向量
且
,(Ⅰ)若
与
是两个共线向量,求
的值;
(Ⅱ)若
,求函数
的最小值及相应的
的值。
(理)(本小题共14分)已知函数
(1)若
时,函数
在其定义域内是增函数,求b的取值范围
(2)在(1)的结论下,设函数
,求函数
的最小值;(3)设函数
的图象C1与函数
的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由。