(本小题满分10分)选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为,直线C2的参数方程为:
(t为参数)
(I )求曲线C1的直角坐标方程,曲线C2的普通方程.
(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的倍得到曲线C3 P为曲线C3上一动点,求点P到直线C2距离的最小值,并求出相应的P点的坐标.
(本小题满分10分)选修4—5:不等式选讲
设函数.
(1)当时,解不等式
;
(2)若的解集为
,
,求证:
.
(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆,直线
(
为参数).
(1)写出椭圆的参数方程及直线
的普通方程;
(2)设,若椭圆
上的点
满足到点
的距离与其到直线
的距离相等,求点
的坐标.
(本小题满分10分)选修4-1:几何证明选讲
如图,圆周角的平分线与圆交于点
,过点
的切线与弦
的延长线交于点
,
交
于点
.
(1)求证:;
(2)若,
,
,
四点共圆,且
,求
.
(本小题满分12分)已知函数.
(1)当时,求函数
的单调增区间;
(2)若函数在
上的最小值为
,求实数
的值;
(3)若函数在
上恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆的右焦点为
,点
在椭圆上.
(1)求椭圆的方程;
(2)点在圆
上,且
在第一象限,过
作圆
的切线交椭圆于
,
两点,求证:△
的周长是定值.