户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体720人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:
|
喜欢户外运动 |
不喜欢户外运动 |
合计 |
男性 |
20 |
|
|
女性 |
|
15 |
|
合计 |
|
|
50 |
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ)求该公司男、女员各多少名;
(Ⅲ)是否有99.5﹪的把握认为喜欢户外运动与性别有关?并说明你的理由;
下面的临界值表仅供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
()
某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社.在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份.设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算该销售点一个月最多可赚得多少元?
已知求不等式
的解集.
已知若
.
(I)求函数的最小正周期;
(II)若求函数
的最大值和最小值.
已知函数在[1,+∞)上为增函数,且
,
,
∈R.
(1)求θ的值;
(2)若在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个
,使得
成立,求
的取值范围.
已知数列满足
,且
,
为
的前
项和.
(1)求证:数列是等比数列,并求
的通项公式;
(2)如果对于任意,不等式
恒成立,求
实数
的取值范围.