椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,
)和A、B都在椭圆E上,且
+
=m
(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
设函数
(1)求函数极值;
(2)当恒成立,求实数a的取值范围.
(本题满分14分)
如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。
(I)求证:A1B1//平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积。
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
在中,已知
,
.
(Ⅰ)求的值;
(Ⅱ)若求
的面积.
已知sin(3π-α)=cos
,cos(π-α)=
·cos(π+β),且0<α<π,0<β<π,求sinα和cosβ.