从甲、乙、丙、丁四个人中选两名代表,求:
(1)甲被选中的概率(2)丁没被选中的概率
一汽车厂生产、
、
三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
轿车![]() |
轿车![]() |
轿车![]() |
|
舒适型 |
![]() |
![]() |
![]() |
标准型 |
![]() |
![]() |
![]() |
按类型分层抽样的方法在这个月生产的轿车中抽取辆,其中有
类轿车
辆.
(1)求的值;
(2)用分层抽样的方法在类轿车中抽取一个容量为
的样本.将该样本看成一个总体,从中任取
辆,求至少有
辆舒适型轿车的概率;
(3)用随机抽样的方法从类舒适型轿车中抽取
辆,经检测它们的得分如下:
、
、
、
、
、
、
、
.把这
辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值
不超过的概率.
已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.
观察下面一组组合数等式:;
;
;
(1)由以上规律,请写出第个等式并证明;
(2)随机变量,求证:
.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
合计 |
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:)
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.