为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
(本小题满分10分)选修:几何证明选讲
如图,圆内接四边形的边
与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
.
(本小题满分12分)已知函数(其中
),函数
在点
处的切线过点
.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数与函数
的图像在
有且只有一个交点,求实数
的取值范围.
(本小题满分12分)已知椭圆的左右焦点分别是
,直线
的方程是
,点
是椭圆
上动点(不在
轴上),过点
作直线
的垂线交直线
于点
,当
垂直
轴时,点
的坐标是
.
(Ⅰ)求椭圆的方程;
(Ⅱ)判断点运动时,直线
与椭圆
的公共点个数,并证明你的结论.
(本小题满分12分)如图,已知在直三棱柱中,
,
,点D是线段
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)当三棱柱的体积最大时,求直线
与平面
所成角
的正弦值.
(本小题满分12分)某校进行教工趣味运动会,其中一项目是投篮比赛,规则是:每位教师投二分球四次,投中三个可以再投三分球一次,投中四个可以再投三分球三次,投中球数小于3则没有机会投三分球,所有参加的老师都可以获得一个小奖品,每投中一个三分球可以再获得一个小奖品。某位教师二分球的命中率是,三分球的命中率是
.
(Ⅰ)求该教师恰好投中四个球的概率;
(Ⅱ)记该教师获得奖品数为,求随机变量
的分布列和数学期望.