设矩阵是把坐标平面上的点的横坐标伸长到3倍,纵坐标伸长到2倍的伸压变换矩阵.
(1)求逆矩阵;
(2)求椭圆在矩阵
作用下变换得到的新曲线的方程.
(本小题满分14分)已知函数处取得极值2。
(Ⅰ)求函数
的表达式;
(Ⅱ)当满足什么条件时,函数
在区间
上单调递增?
(Ⅲ)若为
图象上任意一点,直线与
的图象切于点P,求直线的斜率
的取值范围
(本小题满分12分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润
(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第
个月的当月利润率
,例如:
.
(Ⅰ)求
;(Ⅱ)求第
个月的当月利润率
;
(Ⅲ)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.
(本小题满分12分)椭圆:
的左、右焦点分别为
,焦距为2,,过
作垂直于椭圆长轴的弦长
为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过的直线l交椭圆于
两点.并判断是否存在直线l使得
的夹角为钝角,若存在,求出l的斜率k的取值范围。
(本小题满分12分)已知函数.
(Ⅰ) 求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1
(Ⅰ)求证:DC∥平面ABE;
(Ⅱ)求证:AF⊥平面BCDE;
(Ⅲ)求证:平面AFD⊥平面AFE.