某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.
(1)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(2)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,第4组中有名学生被考官D面试,求
的分布列和数学期望
已知,设函数
(1)若,求函数
在
上的最小值
(2)判断函数的单调性
在极坐标系下,设圆C:,试求:
(1)圆心的直角坐标表示
(2)在直角坐标系中,设曲线C经过变换得到曲线
,则曲线
的轨迹是什么图形?
已知函数,是否存在实数
,使函数在
上递减,在
上递增?若存在,求出所有
值;若不存在,请说明理由.
已知,复数
,
.
(1)当取何值时,
是实数;
(2)求证:.
甲、乙两个班级进行一次数学考试,按照成绩分为优秀和不优秀两种情况,统计成绩后发现,甲班45名学生中有35人考试成绩不优秀 ,乙班45名学生中有7人考试成绩优秀,试分析:
(1)估计甲班学生数学考试成绩的优秀率
(2)能否有99%的把握认为数学考试成绩优秀与 班级有关?
附:(其中
)
临界值表
P(K2≥k) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
k |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |