已知数列{an}(n为正整数)是首项为a1,公比为q的等比数列.
(1)求和: ( i )a1C-a2C
+a3C
, ( ii )a1C
-a2C
+a3C
-a4C
;
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望
.
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿性别 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由
附:
五人站成一排.求下列问题的排法总数;
(1)不站在排头也不站在排尾;(2)
两人都不站在两端;
(3)不站在排头,
不站在排尾;(4)
两两不相邻.
将一颗质地均匀的正方体骰子,先后抛掷两次,将得到的点数分别记为.
(Ⅰ)求直线与圆
相切的概率;
(Ⅱ)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.