某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.
⑴写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式;
⑵写出会员卡租碟方式应付金额y2(元 )与租碟数量x(张)之间的函数关系式;
⑶小彬选取哪种租碟方式更合算?
计算:
.
化简:
如图,矩形ABCD中,AD∥BC,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.
(1)若动点M、N同时出发,经过几秒钟两点相遇?
(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?
(1)如图,在△ABC中,∠BAC=90°,AB="A" C,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA. 试求∠DAE的度数.
(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?
(3)如果把第(1)题中“∠BA C=90°”的条件改为“∠BAC>90°”。其余条件不变,那么∠DAE与∠BAC有怎样的大小关系? 并说明理由。
如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′的位置,则BC′与BC之间的数量关系是多少?
在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子系下来,可是他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,你帮他求出旗杆的高吗?试试看。