已知.(1)设
(2)如果求实数
的值.
已知各项都不相等的等差数列的前六项和为60,且
的等比中项.
(I)求数列的通项公式
;
(II)若数列的前n项和
.
已知函数的导函数是
,
在
处取得极值,且
.
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间
上的最大值为
,若对任意的
总有
成立,求
的取值范围;
(Ⅲ)设是曲线
上的任意一点.当
时,求直线OM斜率的最小值,据此判断
与
的大小关系,并说明理由.
已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线
相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足
. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
已知函数.
(Ⅰ)求函数在
上的值域;
(Ⅱ)若对于任意的,不等式
恒成立,求
.