如图l,在正方形ABCD中,AB =2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,ADCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF//平面AMN,并给出证明.
(本题10分)已知圆.若圆
的切线在x轴和y轴上截距相等,求切线的方程;
(本小题满分14分)定长为3的线段两端点
、
分别在
轴、
轴上滑动,
在线段
上,且
.
(1)求点的轨迹
的方程;
(2)设过且不垂直于坐标轴的动直线
交轨迹
于
、
两点,问:线段
上是否存在一点
,使得以
、
为邻边的平行四边形为菱形?作出判断并证明.
(本小题满分13分)已知椭圆两焦点分别为
、
,
是椭圆在第一象限弧上的一点,并满足
,过点
作倾斜角互补的两条直线
、
分别交椭圆于A、B两点.
(1)求点坐标;
(2)证明:直线的斜率为定值,并求出该定值.
(本小题满分12分)已知椭圆的左、右顶点分别为
、
,曲线
是以椭圆中心为顶点,
为焦点的抛物线.
(1)求曲线的方程;
(2)直线与曲线
交于不同的两点
、
.当
时,求直线
的倾斜角
的取值范围.
(本小题满分12分)已知实数满足方程
.
(1)求的最大值和最小值;
(2)求的最大值与最小值.