游客
题文

设函数.
(Ⅰ)证明:时,函数上单调递增;
(Ⅱ)证明:.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知椭圆过点,长轴长为,过点C(-1,0)且斜率为k的直线l与椭圆相交于不同的两点A、B.
(1)求椭圆的方程;
(2)若线段AB中点的横坐标是求直线l的斜率;
(3)在x轴上是否存在点M,使是与k无关的常数?若存在,求出点M的坐标;若不存在,请说明理由.

(本小题满分14分)
设函数
(1)若函数在x=1处与直线相切
①求实数a,b的值;
②求函数上的最大值.
(2)当b=0时,若不等式对所有的都成立,求实数m的取值范围.

(本小题满分12分)
已知数列的前n项和为,且满足
(1)求的值;
(2)求数列的通项公式;
(3)若的前n项和为求满足不等式的最小n值.

(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—
CD—A的平面角为,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;




(3)若,求实数的值,使得直线SM与平面SCD所成角为



Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号