椭圆方程为,过点
的直线
交椭圆于
为坐标原点,点
满足
,当
绕点
旋转时,求动点
的轨迹方程.
数列首项
,前
项和
与
之间满足
(1)求证:数列是等差数列
(2)求数列的通项公式
(3)设存在正数,使
对于一切
都成立,求
的最大值。
已知圆方程为:
.
(1)直线过点
,且与圆
交于
、
两点,若
,求直线
的方程;
(2)过圆上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
(
为原点),求动点
的轨迹方程,并说明此轨迹是什么曲线.
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且
在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面
;
(Ⅲ)求三棱锥的体积.
( 12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是
,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数的分布列和数学期望.
设函数.
(1)求函数的最小正周期.
(2)当时,
的最大值为2,求
的值,