游客
题文

现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

已知抛物线的解析式为 y = 1 20 x 2 + bx + 5

(1)当自变量 x 2 时,函数值 y x 的增大而减少,求 b 的取值范围;

(2)如图,若抛物线的图象经过点 A ( 2 , 5 ) ,与 x 轴交于点 C ,抛物线的对称轴与 x 轴交于 B

①求抛物线的解析式;

②在抛物线上是否存在点 P ,使得 PAB = ABC ?若存在,求出点 P 的坐标;若不存在,请说明理由.

已知反比例函数 y = k x 的图象过点 A ( 3 , 1 )

(1)求反比例函数的解析式;

(2)若一次函数 y = ax + 6 ( a 0 ) 的图象与反比例函数的图象只有一个交点,求一次函数的解析式.

某游乐场部分平面图如图所示, C E A 在同一直线上, D E B 在同一直线上,测得 A 处与 E 处的距离为80 米, C 处与 D 处的距离为34米, C = 90 ° ABE = 90 ° BAE = 30 ° ( 2 1 . 4 3 1 . 7 )

(1)求旋转木马 E 处到出口 B 处的距离;

(2)求海洋球 D 处到出口 B 处的距离(结果保留整数).

由多项式乘法: ( x + a ) ( x + b ) = x 2 + ( a + b ) x + ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式: x 2 + ( a + b ) x + ab = ( x + a ) ( x + b )

示例:分解因式: x 2 + 5 x + 6 = x 2 + ( 2 + 3 ) x + 2 × 3 = ( x + 2 ) ( x + 3 )

(1)尝试:分解因式: x 2 + 6 x + 8 = ( x +    ) ( x +    )

(2)应用:请用上述方法解方程: x 2 3 x 4 = 0

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号