已知A、D分别为椭圆E: 的左顶点与上顶点,椭圆的离心率
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
的最大值为1 .
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;
(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社.在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份.设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算该销售点一个月最多可赚得多少元?
已知求不等式
的解集.
已知若
.
(I)求函数的最小正周期;
(II)若求函数
的最大值和最小值.
已知函数在[1,+∞)上为增函数,且
,
,
∈R.
(1)求θ的值;
(2)若在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个
,使得
成立,求
的取值范围.
已知数列满足
,且
,
为
的前
项和.
(1)求证:数列是等比数列,并求
的通项公式;
(2)如果对于任意,不等式
恒成立,求
实数
的取值范围.