(本小题满分16分)设数列的前
项和为
,满足
.
(1)当时,
①设,若
,
.求实数
的值,并判定数列
是否为等比数列;
②若数列是等差数列,求
的值;
(2)当时,若数列
是等差数列,
,且
,
,
求实数的取值范围.
(本小题满分14分)如果对于函数的定义域内任意的
,都有
成立,那么就称函数
是定义域上的“平缓函数”.
(1)判断函数,
是否是“平缓函数”;(2)若函数
是闭区间
上的“平缓函数”,且
.证明:对于任意的
,都有
成立.(3)设
、
为实常数,
.若
是区间
上的“平缓函数”,试估计
的取值范围(用
表示,不必证明).
(本小题满分14分)已知数列的前
项和
,
.
(1)求的通项公式;(2)设
N+,集合
,
.现在集合
中随机取一个元素
,记
的概率为
,求
的表达式.
(本小题满分14分)如图5,
是△
的重心,
、
分别是边
、
上的动点,且
、
、
三点共线.(1)设
,将
用
、
、
表示;
(2)设,
,证明:
是定值;
(3)记△与△
的面积分别为
、
.求
的取值范围.
(本小题满分14分)已知函数满足
(其中
为
在点
处的导数,
为常数).(1)求函数
的单调区间;(2)若方程
有且只有两个不等的实数根,求常数
;(3)在(2)的条件下,若
,求函数
的图象与
轴围成的封闭图形的面积.
(本小题满分12分)如图4,正三棱柱
中,
,
、
分别是侧棱
、
上的点,且使得折线
的长
最短.
(1)证明:平面平面
;(2)求直线
与平面
所成角的余弦值.