某初级中学共有学生2000名,各年级男、女生人数如下表:
|
初一年级 |
初二年级 |
初三年级 |
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1) 求x的值.
(2) 现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(3) 已知y245,z
245,求初三年级中女生比男生多的概率.
( 本小题10分)
k代表实数,讨论方程所表示的曲线.
(本小题8分)
求双曲线的实轴和虚轴的长、顶点和焦点
坐标、离心率、渐近线方程:
(本小题满分14分)
如图,已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为
.设直线
与椭圆
相交于
两点,点
关于
轴对称点为
.
(1)求椭圆的方程;
(2)若以线段为直径的圆过坐标原点
,求直线
的方程;
(3)试问:当变化时,直线
与
轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
(本小题满分12分)
已知数列.
(1)当为何值时,数列
可以构成公差不为零的等差数列,并求其通项公式;
(2)若,令
,求数列
的前
项和
.
(本小题满分12分)
已知是边长为2的等边三角形,
平面
,
,
是
上一动点.
(1)若是
的中点,求直线
与平面
所成的角的正弦值;
(2)在运动过程中,是否有可能使
平面
?请说明理
由.