如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,请问∠G等于多少度?写出完整的说理过程.
(年贵州省黔南州)如图,在平面直角坐标系xOy中,抛物线过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.
(1)求b、c的值;
(2)当t为何值时,点D落在抛物线上;
(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.
(年蒙自市初中学业水平第一次模拟测试)如图,已知在平面直角坐标系中,
是坐标原点,点
在反比例函数
的图象上,过点
的直线
交
轴于点
.
(1)求和
的值;
(2)求的面积.
(年新疆乌鲁木齐市)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程(km),小轿车的路程
(km)与时间x(h)的对应关系如图所示.
(1)甲乙两地相距多远?小轿车中途停留了多长时间?
(2)①写出与x的函数关系式;
②当x≥5时,求与x的函数解析式;
(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?
(年云南省)如图,在平面直角坐标系中,抛物线(
)与x轴相交于A,B两点,与y轴相交于点C,直线
(
)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(年云南省)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.
(1)求y与x的函数关系,并写出自变量x的取值范围;
(2)当汽车行驶了2小时时,求汽车距B地有多少千米?