某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表:
已知:
(1)求;
(2)画出散点图;你从散点图中发现该种服装的销售件数x与纯利润y(元)之间有什么统计规律吗?
(3)求纯利y与每天销售件数x之间的线性回归方程;
(4)若该周内某天销售服装20件,估计可获纯利多少元?
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.
已知定点A(p为常数,p>0),B为x轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点G在y轴上.
(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.
设A(x1,y1),B(x2,y2)是椭圆C:=1(a>b>0)上两点,已知m=
,n=
,若m·n=0且椭圆的离心率e=
,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.
(1)求动点P的轨迹方程;
(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.