游客
题文

某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

科目 数学   题型 解答题   难度 容易
知识点: 误差估计
登录免费查看答案和解析
相关试题

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中
随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:
.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

如图,在长方体中,,的中点,的中点.

(I)求证:平面;
(II)求证:平面;
(III)若二面角的大小为,求的长.

已知函数.
(I)求的值;
(II)求函数的最小正周期及单调递减区间.

已知集合是正整数的一个排列,函数
对于,定义:,称的满意指数.排列为排列的生成列;排列为排列的母列.
(Ⅰ)当时,写出排列的生成列及排列的母列;
(Ⅱ)证明:若中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列,定义变换:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换将排列变换为各项满意指数均为非负数的排列.

已知函数,其中
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号