某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为
;汽车走②号公路堵车的概率为
,不堵车的概率为
.由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
已知抛物线的焦点为
,抛物线
的焦点为
.
(1)若过点的直线
与抛物线
有且只有一个交点,求直线
的方程;
(2)若直线与抛物线
交于
.
两点,求
的面积.
在中,已知角
.
.
的对边分别为
,且
.
(1)求的大小;
(2)若,试判断
的形状.
设等差数列的前
项和为
,
,
.
(1)求数列的通项公式;
(2)设数列的前
项和为
,求证:
.
如图,在平面直角坐标系中,椭圆
过点
,离心率
,
为椭圆的左右焦点.
(1)求椭圆的标准方程;
(2)设圆的圆心
在
轴上方,且圆
经过椭圆
两焦点.点
为椭圆
上的一动点,
与圆
相切于点
.
①当时,求直线
的方程;
②当取得最大值为
时,求圆
方程.
如图,在正方体的棱长为
,
为棱
上的一动点.
(1)若为棱
的中点,
①求四棱锥的体积
②求证:面面
(2)若面
,求证:
为棱
的中点.