游客
题文

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.

(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .

 
甲流水线
乙流水线
合计
合格品


 
不合格品


 
合 计
 
 


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

附:下面的临界值表供参考:
(参考公式:,其中

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设MN是双曲线的弦,且MN与轴垂直,是双曲线的左、右顶点.
(Ⅰ)求直线的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足( 为坐标原点,)
求证:为定值,并求出这个定值.

如图,在矩形中,的中点,以为折痕将向上折起,使,且平面平面
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

某工厂每月生产某种产品三件,经检测发现,工厂生产该产品的合格率为,已知生产一件合格品能盈利25万元,生产一件次品将会亏损10万元,假设该产品任何两件之间合格与否相互没有影响.
(Ⅰ)求工厂每月盈利额ξ(万元)的所有可能取值;
(Ⅱ)若该工厂制定了每月盈利额不低于40万元的目标,求该工厂达到盈利目标的概率;
(Ⅲ)求工厂每月盈利额ξ的分布列和数学期望.

设函数
(Ⅰ)求函数的最小正周期和单调递增区间;
(Ⅱ)△ABC,角A,B,C所对边分别为a,b,c,且求a的值.

已知数列中,.
(1)求
(2)求的通项公式;
(3)证明:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号