已知函数
(1)时,求
的单调区间;
(2)设若
恒成立,求
的取值范围.
已知,数列
满足:
。
(1)用数学归纳法证明:;
(2)已知;
(3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由。
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为
,且过点
(1)求椭圆C的方程;
(2)直线分别切椭圆C与圆
(其中
)于A.B两点,求|AB|的最大值。
设函数.
(Ⅰ)若x=时,取得极值,求
的值;
(Ⅱ)若在其定义域内为增函数,求
的取值范围;
(Ⅲ)设,当
=-1时,证明
在其定义域内恒成立,并证明
(
).
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,
,已知AE与平面ABC所成的角为
,且
.
(1)证明:平面ACD平面
;
(2)记,
表示三棱锥A-CBE的体积,求
的表达式;
(3)当取得最大值时,求二面角D-AB-C的大小.
上海世博会上有一种舞台灯,外形是正六棱柱,在其每个侧面(编号分别是①②③④⑤⑥)上安装5只颜色各异的灯,每只灯正常发光的概率是0.5,若一侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个侧面面上恰有2个侧面需要更换的概率。
(3)写出的分布列,并求出
的数学期望。