已知反比例函数图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数
的图象上另一点C(n,—
),
(1)求反比例函数的解析式以及直线y=ax+b的解析式;
(2)求反比例函数的值大于一次函数的值时所对应的x的取值范围。
(3) 自己连接AC、和BC 并求△ABC的面积
解方程:.
解不等式组
如图,已知在四边形ABCD中,∠B=∠D=90°,AE、CF分别是∠DAB及∠DCB的平分线.则AE与FC有什么关系?请说明理由。
运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图,在等腰三角形ABC中,AB=AC,AC边上的高为,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为
、
.连接AM,可得结论
+
=
.当点M在BC延长线上时,
、
、
之间的等量关系式是.(直接写出结论不必证明).
(2)应用:平面直角坐标系中有两条直线:
、
:
,若
上的一点M到
的距离是1.请运用(1)的条件和结论求出点M的坐标.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30º,求∠ACF度数.