(本题6分)小青同学想利用影长测量学校旗杆AB的高度.某一时刻他测得长1米的标杆的影长为1.4米,与此同时他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得其长度为11.2米和2米,如图所示.请你帮他求出旗杆AB的高度.
某加油站五月份营销一种油品的销售利润(万元)与销售量
(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
(1)观察与发现
小明将三角形纸片沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到
(如图②).小明认为
是等腰三角形,你同意吗?请说明理由.
(2)实践与运用
将矩形纸片沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点
处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中
的大小.
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).
如图,已知二次函数的图象的顶点为
.二次函数
的图象与
轴交于原点
及另一点
,它的顶点
在函数
的图象的对称轴上.
(1)求点与点
的坐标;
(2)当四边形为菱形时,求函数
的关系式.
如图,在梯形中,
两点在边
上,且四边形
是平行四边形.
(1)与
有何等量关系?请说明理由;
(2)当时,求证:
是矩形.