游客
题文

小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP(图2)的夹角记为y1度,时针与OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:

请你完成:
求出图3中y2与t的函数关系式;
直接写出A、B两点的坐标,并解释这两点的实际意义;
若小华继续观察一个小时,请你在题图3中补全图象.

科目 数学   题型 解答题   难度 较易
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,点 A B D E 在同一条直线上, AB = DE AC / / DF BC / / EF .求证: ΔABC ΔDEF

如图1,在 ΔABC 中, AB = AC N BC 边上的一点, D AN 的中点,过点 A BC 的平行线交 CD 的延长线于 T ,且 AT = BN ,连接 BT

(1)求证: BN = CN

(2)在图1中 AN 上取一点 O ,使 AO = OC ,作 N 关于边 AC 的对称点 M ,连接 MT MO OC OT CM 得图2.

①求证: ΔTOM ΔAOC

②设 TM AC 相交于点 P ,求证: PD / / CM PD = 1 2 CM

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 的中点 O 为圆心, AB 为直径的圆交 AC D E BC 的中点, DE BA 的延长线于 F

(1)求证: FD 是圆 O 的切线:

(2)若 BC = 4 FB = 8 ,求 AB 的长.

我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类: A 类——接种了只需要注射一针的疫苗; B 类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗; C 类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗; D 类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).

请根据统计图回答下列问题

(1)此次抽样调查的人数是多少人?

(2)接种 B 类疫苗的人数的百分比是多少?接种 C 类疫苗的人数是多少人?

(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.

(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号