2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为 (享受美食)、 (交流谈心)、 (室内体育活动)、 (听音乐)和 (其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小莹抽取60名男生居家减压方式统计表(单位:人)
减压方式 |
|
|
|
|
|
人数 |
4 |
6 |
37 |
8 |
5 |
表2:小静随机抽取10名学生居家减压方式统计表(单位:人)
减压方式 |
|
|
|
|
|
人数 |
2 |
1 |
3 |
3 |
1 |
表3:小新随机抽取60名学生居家减压方式统计表(单位:人)
减压方式 |
|
|
|
|
|
人数 |
6 |
5 |
26 |
13 |
10 |
根据以上材料,回答下列问题:
(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.
(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.
如图,在平面直角坐标系中, 为坐标原点,点 , 在函数 的图象上(点 的横坐标大于点 的横坐标),点 的坐标为 ,过点 作 轴于点 ,过点 作 轴于点 ,连接 , .
(1)求 的值.
(2)若 为 中点,求四边形 的面积.
如图,某班数学小组测量塔的高度,在与塔底部 相距 的 处,用高 的测角仪 测得该塔顶端 的仰角 为 .求塔 的高度(结果精确到 .
(参考数据: , ,
图①、图②、图③都是 的正方形网格,每个小正方形的顶点称为格点. , , 均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与 重合的线段 ,使 与 关于某条直线对称,且 , 为格点.
(2)在图②中,画一条不与 重合的线段 ,使 与 关于某条直线对称,且 , 为格点.
(3)在图③中,画一个 ,使 与 关于某条直线对称,且 , , 为格点.
如图,在 中, ,点 在边 上,且 ,过点 作 ,并截取 ,且点 , 在 同侧,连接 .求证: .