图1、图2是北京市2006﹣﹣2010年户籍人口数和户籍65岁及以上人口数的统计图和2010年北京市户籍人口各年龄段统计图
请你根据以上信息解答下列问题:
(1)2010年北京市65岁及以上人口数约有多少万人?(结果保留四位有效数字)
(2)补全条形统计图;
(3)根据联合国教科文组织的规定,一个国家(地区)65岁以上的人口占人口总数的7%以上,这个国家(地区)则进入了老龄化社会.由此可见北京市已经步入了老龄化社会.小明通过学习知道养老方式有三种:家庭养老、机构养老和社区养老.小明同学调查了他所居住小区的120名65岁及以上的老人,选择养老方式如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市65岁及以上的老人选择机构养老的约有多少万人?
小明居住小区65岁及以上的老人选择养老方式的人数统计表.
养老方式 |
家庭养老 |
机构养老 |
社区养老 |
人数(人) |
72 |
18 |
30 |
某中学就到校的方式问题对初三年级的所有学生进行一了次调查,并将调查结果制作了表格和扇形统计图,请你根据图表信息下列各题:
(1)补全下表:
初三学生 人数 |
步行 人数 |
骑车 人数 |
乘公交车 人数 |
其它方式 人数 |
60 |
(2)在扇形统计图中,“步行”对应的圆心角的度数为.
先化简,再求值,其中
.
如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转
,得到线段AB.过点B作
轴的垂线,垂足为E,过点C作
轴的垂线,交直线BE于点D.运动时间为
秒.
(1)当点B与点D重合时,求的值;
(2)设△BCD的面积为S,当为何值时,
?
(3)连接MB,当MB∥OA时,如果抛物线的顶点在△ABM内部(不包括边),求a的取值范围.
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且
,
.
理解与作图:
(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
计算与猜想:
(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
启发与证明:
(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A→D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.
(1)求甲在每个景点逗留的时间,并补全图象;
(2)求C,E两点间的路程;
(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候, 等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.