如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.
(1)写出下一步“马”可能到达的点的坐标__________;
(2)顺次连接(1)中的所有点,得到的图形是__________图形(填“中心对称”、“旋转对称”、“轴对称”);
(3)指出(1)中关于点P成中心对称的点__________.
如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF;
先化简再求值:其中a=3
计算:
已知:抛物线与
轴交于A(1,0)和B(
,0)点,与
轴交于C点
(1)求出抛物线的解析式;
(2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使
为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.