游客
题文

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.
(Ⅰ)求a、b的值; 
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:

视力数据
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
人数




2

2

2
1

1


(1)用上述样本数据估计高三(1)班学生视力的平均值;
(2)已知其余五个班学生视力的平均值分别为.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于的概率.

是函数的零点.
(1)证明:
(2)证明:

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.

已知,设命题:函数在区间上与轴有两个不同的交点;命题在区间上有最小值.若是真命题,求实数的取值范围.

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结(如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号