2012年5月13日为母亲节,某校结合学生实际,开展了形式多样的感恩教育活动.下面图1,图2分别是该校调查部分学生是否知道母亲生日情况的扇形统计图和频数分布直方图.
根据上图信息,解答下列问题:
(1)被调查的学生中,记不清母亲生日情况的学生有 ▲ 人;
(2)本次被调查的学生总人数有 ▲ ,并补全频数分布直方图2;
(3)若这所学校共有学生2400人,已知被调查的学生中,知道母亲生日的女生人数是男生人数的2倍,请你通过计算估计该校知道母亲生日的女生和男生分别有多少人?
在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).
(1)在图中作出△ABC关于y轴的对称△A1B1C1.
(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标.
A2 ______________ B2 ______________ C2______________
如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),并且与x轴以及直线y=x+1分别交于点C、D.
(1)求直线BD的函数表达式;
(2)求四边形AOCD的面积;
(3)在y轴上是否存在这样的点P,使得以P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P的坐标;如果不存在,说明理由.
已知方程组的解满足
,试确定
的范围.
某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.
(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.
(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?
如图所示,在Rt△ABC中, AB=AC,∠BAC=90°,O为BC中点.如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.