某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任出两位同学,共同帮助成绩在
中的某一个同学,试列出所有基本事件;若
同学成绩为43分,
同学成绩为95分,求
、
两同学恰好被安排在“二帮一”中同一小组的概率.
分组 |
频数 |
频率 |
[ 40, 50 ) |
2 |
0.04 |
[ 50, 60 ) |
3 |
0.06 |
[60, 70 ) |
14 |
0.28 |
[ 70, 80 ) |
15 |
0.30 |
[ 80, 90 ) |
|
|
[ 90, 100 ] |
4 |
0.08 |
合计 |
|
|
过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.
(1)试证明A,B两点的纵坐标之积为定值;
(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3,试探求k1,k2,k3之间的关系,并给出证明.
设上的两点,已知向量
,
,若m·n=0且椭圆的离心率
短轴长为2,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
是经过椭圆
右焦点的任一弦,若过椭圆中心O的弦
,求证:
:
是定值
已知定点在抛物线
:
(
>0)上,动点
且
.求证:弦
必过一定点.
已知,椭圆C经过点A(1,),两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.