在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线.如图(Ⅰ),将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,连结AF.求证:四边形ADEF是等腰梯形;
如图(Ⅱ),在(1)的条件下,再将△FCE绕点C顺时针旋转,设旋转角为
(0°<
<90°)连结AF、DE.
AC⊥CF时,求旋转角的度数;②当
=60°时,请判断四边形ADEF的形状,并给予证明.
解方程组:
计算: .
如图1,矩形 中, , , 中, , , , 的延长线相交于点 ,且 , , .将 绕点 逆时针旋转 得到△ .
(1)当 时,求点 到直线 的距离.
(2)在图1中,取 的中点 ,连结 ,如图2.
①当 与矩形 的一条边平行时,求点 到直线 的距离.
②当线段 与矩形 的边有且只有一个交点时,求该交点到直线 的距离的取值范围.
如图1,排球场长为 ,宽为 ,网高为 ,队员站在底线 点处发球,球从点 的正上方 的 点发出,运动路线是抛物线的一部分,当球运动到最高点 时,高度为 ,即 ,这时水平距离 ,以直线 为 轴,直线 为 轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即 轴垂直于底线),求球运动的高度 与水平距离 之间的函数关系式(不必写出 取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点 (如图1,点 距底线 ,边线 ,问发球点 在底线上的哪个位置?(参考数据: 取
问题:如图,在 中, .在 的延长线上取点 , ,作 ,使 .若 , ,求 的度数.
答案: .
思考:(1)如果把以上“问题”中的条件“ ”去掉,其余条件不变,那么 的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“ ”去掉,再将“ ”改为“ ”,其余条件不变,求 的度数.