游客
题文

在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线.
如图(Ⅰ),将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,连结AF.求证:四边形ADEF是等腰梯形;

如图(Ⅱ),在(1)的条件下,再将△FCE绕点C顺时针旋转,设旋转角为(0°<<90°)连结AF、DE.

AC⊥CF时,求旋转角的度数;②当=60°时,请判断四边形ADEF的形状,并给予证明.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

解方程组: x - y = 1 , 3 x + y = 7 .

计算: | - 3 | + 8 - 2

如图1,矩形 DEFG 中, DG = 2 DE = 3 Rt Δ ABC 中, ACB = 90 ° CA = CB = 2 FG BC 的延长线相交于点 O ,且 FG BC OG = 2 OC = 4 .将 ΔABC 绕点 O 逆时针旋转 α ( 0 ° α < 180 ° ) 得到△ A ' B ' C '

(1)当 α = 30 ° 时,求点 C ' 到直线 OF 的距离.

(2)在图1中,取 A ' B ' 的中点 P ,连结 C ' P ,如图2.

①当 C ' P 与矩形 DEFG 的一条边平行时,求点 C ' 到直线 DE 的距离.

②当线段 A ' P 与矩形 DEFG 的边有且只有一个交点时,求该交点到直线 DG 的距离的取值范围.

如图1,排球场长为 18 m ,宽为 9 m ,网高为 2 . 24 m ,队员站在底线 O 点处发球,球从点 O 的正上方 1 . 9 m C 点发出,运动路线是抛物线的一部分,当球运动到最高点 A 时,高度为 2 . 88 m ,即 BA = 2 . 88 m ,这时水平距离 OB = 7 m ,以直线 OB x 轴,直线 OC y 轴,建立平面直角坐标系,如图2.

(1)若球向正前方运动(即 x 轴垂直于底线),求球运动的高度 y ( m ) 与水平距离 x ( m ) 之间的函数关系式(不必写出 x 取值范围).并判断这次发球能否过网?是否出界?说明理由.

(2)若球过网后的落点是对方场地①号位内的点 P (如图1,点 P 距底线 1 m ,边线 0 . 5 m ) ,问发球点 O 在底线上的哪个位置?(参考数据: 2 1 . 4 )

问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E C ,作 ΔAEC ,使 EA = EC .若 BAE = 90 ° B = 45 ° ,求 DAC 的度数.

答案: DAC = 45 °

思考:(1)如果把以上“问题”中的条件“ B = 45 ° ”去掉,其余条件不变,那么 DAC 的度数会改变吗?说明理由.

(2)如果把以上“问题”中的条件“ B = 45 ° ”去掉,再将“ BAE = 90 ° ”改为“ BAE = n ° ”,其余条件不变,求 DAC 的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号