游客
题文

在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.

⑴求证:Rt△ABE≌Rt△CBF;
⑵若∠CAE=30º,求∠ACF度数.

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).
问题探究:把图1中的△AEF绕着点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)

在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形


阅读以上内容,回答下列问题:
在图①中,所有与CH相等的线段是 ,tan的值是
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
求证:四边形BCMN是矩形

将图②中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是


在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.


已知实数a,b满足,当时,函数)的最大值与最小值之差是1,求a的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号