某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
如图,有一圆锥形粮堆,从正面看是边长为2m的正三角形ABC,母线AC中点为P,一条小虫在B处,它要圆锥侧面到达P处,则小虫所经过的最短路程是多少?
如图,⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED与弧CAD围成的新月形的面积S.
有一圆心角为120°、半径长为6㎝的扇形,若将OA、OB重合后围成一圆锥,那么圆锥的高是多少?
如图所示,相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影)部分的面积之和是多少?
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点 F,且AC=8,tan∠BDC=.
(1)求⊙O的半径长;
(2)求线段CF长.