已知函数。
(1)求的最大值和最小值;
(2)若不等式在
上恒成立,求实数
的取值范围。
(本小题满分12分)已知函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直,函数g(x)=f(x)+-bx.
(Ⅰ)求实数a的值;
(Ⅱ)设x1,x2 (x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)-g(x2)的最小值.
(本小题满分12分)已知直线l的方程为y=x-2
,又直线l过椭圆C:
(a>b>0)的右焦点,且椭圆的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,1)的直线与椭圆C交于点A,B,求△AOB的面积的最大值.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设=λ
(0≤A≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
(本小题满分12分)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
日销售量 |
1 |
1.5 |
2 |
天数 |
10 |
25 |
15 |
频率 |
0.2 |
a |
b |
若以上表中频率作为概率,且每天的销售量相互独立.
(Ⅰ)求5天中该种商品恰好有两天的销售量为1.5吨的概率;
(Ⅱ)已知每吨该商品的销售利润为2千元,X表示该种商品某两天销售利润的和(单位:千元),求X的分布列和数学期望.
(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+sinB=2sinC,a=2b.
(Ⅰ)证明:△ABC是钝角三角形;
(Ⅱ)若,求c的值.