高考数学考试中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“在每小题给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分”.某考生每道选择题都选出了一个答案,能确定其中有6道题的答案是正确的,而其余题中,有两道题都可判断出有两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜.
试求出该考生的选择题:
(I)得30分的概率;
(II)得多少分的概率最大;
(III)所得分数的数学期望.
已知命题p:函数y=xm在(0,+∞)为减函数命题q:复数z=m2-5m-6+(m-2)i,(m∈R)在复平面内的对应点在第三象限.如果p或q为真命题,p且q为假命题,求m的取值范围.
已知函数f(x)=是定义在(-1,1)上的奇函数,且f(
)=
.
(1)试确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.
已知集合A =,
(1)若A,求a的值;(2)若A中有且只有一个元素,求a的值,并求出这个元素。
已知,函数
(1)当时,求函数
在点(1,
)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
设椭圆 :
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得
,若存在,求出直线
的方程;若不存在,说明理由;