若某产品的直径长与标准值的差的绝对值不超过
时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取
件进行检测,结果发现有
件不合格品。计算这
件不合格品的直径长与标准值的差(单位:
), 将所得数据分组,得到如下频率分布表:
分组 |
频数 |
频率 |
[-3, -2) |
0.10 |
|
[-2, -1) |
8 |
|
(1,2] |
0.50 |
|
(2,3] |
10 |
|
(3,4] |
||
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
(本小题满分13分)
已知函数,其中a为常数,且
.
(Ⅰ)若,求函数
的极值点;
(Ⅱ)若函数在区间
上单调递减,求实数a的取值范围.
(本小题满分13分)
为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
(Ⅰ)求4人恰好选择了同一家公园的概率;
(Ⅱ)设选择甲公园的志愿者的人数为,试求
的分布列及期望.
(本小题满分14分)
已知四棱锥,底面
为矩形,侧棱
,其中
,
为侧棱
上的两个三等分点,如图所示.
(Ⅰ)求证:;
(Ⅱ)求异面直线与
所成角的余弦值;
(Ⅲ)求二面角的余弦值.
(本小题满分13分)
记等差数列的前n项和为
,已知
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列
的前n项和
.
已知数列{}中,
在直线y=x上,其中n=1,2,3….
(Ⅰ)令
(Ⅱ)求数列
(Ⅲ)设的前n项和,是否存在实数
,使得数列
为等差数列?若存在,试求出
.若不存在,则说明理由。